Price of the time, or the price of 1 attosec

Generally it cames to our mind on birthdays...

PV= Present value

FV= Future value

Y = 195 day's interest of interest (01.01. - 07.14.)

t = time

n = period number / 1 year = 1/t

i = interest rate (year) = 0.01 = 1%

FV=PV*(1+i)^t - years

FV=PV*(1+i/n)^n - within a year

FV=PV*(1+i/(1/t))^1/t = PV*(1+i*t)^1/t

If

t->0

then

n->oo (0 <-> oo)

Interest of the interest:

If 1/t -> oo then lim(1+i/(1/t))^1/t = e^i

FV=PV*e^i

FV=PV*1,010050167

Y= PV*1,0050167*10^-2 / 365 * 195 = PV*5,3692665*10^-3

(i=0.01)

195day= 1,6848*10^25 attosec

If PV = 0,5 USD then Y = 2,6846332*10^-3 USD (interest of 50 cent during 195 days with i=1%)

(Y = 0,0026846332 USD briefly 0,25 cent!)

1 attosec = Y/1,6848*10^25 = 1,5934432*10^-28 USD (PV= 50 cent)

1 attosec = (PV*e^i - PV) / 3,1536*10^25 USD/1year (t->0)

Not everything is punctual because of inflation, deflation, now money, and so on...

Happy birthdays for those who are celebrating their birthday today.

Andy